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An extended version of the interactive boundary-layer approach which has been used 
widely in steady-flow calculations is applied here to  the linear and nonlinear stability 
properties of channel flows and boundary layers in the moderate-to-large Reynolds- 
number regime. This is the regime of most practical concern. First, for linear stability 
the agreement found between the interactive approach and Orr-Sommerfeld results 
remains fairly close even a t  Reynolds numbers as low as about & of the critical value 
for plane Poiseuille flow, or for Blasius flow. Secondly, nonlinear unsteady 
calculations and comparisons with full solutions obtained by enlarging the same 
method are also presented. Overall the work suggests that, at the finite Reynolds 
numbers where real interest lies, the dominant physical processes of instability in 
channel flow and boundary layers are of boundary-layer form, with interaction, and 
it suggests also an alternative numerical technique for determining those processes. 
This alternative technique uses the interactive boundary-layer method as the central 
means for obtaining full unsteady Navier-Stokes solutions. 

1. Introduction 
There seems little doubt that  a major need in the understanding of nonlinear 

hydrodynamic instability and subsequent transition, in boundary layers, channel 
flows, pipe flows and others, is for more nonlinear computational solutions and 
accurate properties a t  finite Reynolds numbers. For, on the one hand, weakly 
nonlinear theory (see Stuart 1960, 1971 ; Watson 1960; Stewartson & Stuart 1971), 
as i t  is based near a linear neutral solution, is confined conceptually or strictly (if 
not in reality) to a quite limited range of wavenumbers, Reynolds numbers and 
disturbance sizes, the degree of that confinement in practice varying from problem 
to problem and being uncertain usually. On the other, inviscid theory or asymptotic 
theory (Reid 1965; Tollmien 1929; Schlichting 1933; Lin 1955; Smith 1979a; Drazin 
& Reid 1981) for large Reynolds numbers, or large Taylor, Gortler or Grashof 
numbers, for instance, likewise has a range of application and assumptions which at 
first sight a t  least (see below, however) might appear to be too limited or questionable 
to be of much practical help. I n  fact both theories do often ‘work’ surprisingly well 
over a much wider range of conditions than might be expected and that is an 
encouraging aspect. I n  addition the theories provide much valuable analytical insight 
into the nature of instability mechanisms as well as allowing some valuable checks 
to be made on computational results. Yet strictly, and from a perhaps rather 
pessimistic viewpoint, both these theories and others rely in essence on the assumption 
of a vanishingly small parameter such as the disturbance energy or the inverse 
Reynolds number, whereas in practice the values of the parameters of real concern 
are finite and non-zero. So, despite the undoubted value of these two major 
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analytically based theories in terms of their insight, it  would seem that in general 
they have to be supplemented and extended, or at least tested, by considerable 
numerical efforts addressing the full Navier-Stokes equations if results of practical 
interest are to be derived, for sizeable disturbances to a given basic motion. This is 
not to advocate the superiority of fully computational methods; far from i t  - we 
merely conclude that they are most necessary. 

Yet traditional methods of numerical solution of the Navier-Stokes equations can 
often encounter severe difficulties, in accuracy, convergence rates, numerical stability, 
and computer time and storage, a t  Reynolds numbers beyond moderate values. 
Although these types of difficulty can be suppressed in different flow problems by 
various means (see e.g. Dennis & Hudson 1978 ; Patera & Orszag 1981 ; Fornberg 1980; 
Smith 1981), with varying degrees of success, the question does arise as to whether 
alternative methods of numerical solution can be constructed which reflect more 
adequately the principal physical features tending to dominate the flow response as 
the Reynolds number increases. Moreover the Reynolds numbers of most practical 
interest are most often in the moderate-to-high range in stability problems. This is 
particularly so for plane Poiseuille flow through a channel, where the critical 
Reynolds number of 5772 (in traditional notation) according to linear theory ‘looks 
so large ’, while the correr ponding number in Blasius boundary-layer flow is approx- 
imately 520, which is ,Is0 ‘largish’. Even in experiments, the critical Reynolds 
number for plane Poiseuille flow tends to  remain within the ‘largish’ range 
1000-3000 for all but the most carefully controlled conditions. Large-looking critical 
Reynolds numbers are also a feature of rotating fluid flows, for instance. Of course 
all these critical values are finite, not asymptotic, and can be lessened in appearance 
by redefinition of the variables, but then the new variables contain ‘largish’ 
numerical values instead, and so the largeness remains present. Can any advantage 
therefore be taken of the presence of a large or moderate-to-high parameter in the 
nonlinear unsteady governing equations Z Surely such a parameter could reflect the 
near-emergence of some overriding physical mechanism for increasing Reynolds 
numbers. 

The general ‘interactive boundary-layer ’ approach in its numerous guises at finite 
Reynolds numbers takes up the above theme. The approach acknowledges, and is 
guided by, the asymptotic properties of the flow solution for large Reynolds numbers, 
and bases its computational schemes upon those properties by addressing first, where 
possible, an appropriate simplified set of equations rather than the complete 
Navier-Stokes equations. The reduced set is chosen to retain the primary physics of 
the stability problem in the moderate-to-high Reynolds-number regime as guided by 
the asymptotic theory; and so, secondly and if necessary, the resultant solution can 
be restored to ‘full ’ Navier-Stokes status almost as an afterthought, by inclusion 
of the omitted secondary effects only then (as is done in the present work, see below). 
The interactive boundary-layer concept has proved very useful in numerical studies 
of steady flow (see e.g. Davis & Rubin 1980; Davis & Werle 1981; Rubin 1982; and 
references therein) in aerodynamics and in channel flows. I n  this paper we consider 
its application to  the linear and nonlinear unsteady flow and instability of boundary 
layers and channel flows. The concept, which in our view has many guises or 
extensions (e.g. the parabolized Navier-Stokes equations) and nomenclatures, and 
which loosely is in the spirit of some classical approximations for linear disturbances, 
centres around the unsteady nonlinear boundary-layer equations subject to inter- 
active, non-classical, boundary conditions. By incorporating also lateral pressure 
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gradients i t  reproduces the asymptotic behaviour of both Navieratokes and 
Orr-Sommerfeld solutions accurately, to several orders of magnitude, as well as 
allowing weakly or strongly nonlinear amplitude modulations and emergent critical 
layers to  exert their influence at finite Reynolds numbers. The general interactive 
boundary-layer approach therefore represents perhaps the most practically valuable 
application of the insight which asymptotic theory provides. Asymptotic theory 
almost always yields increased theoretical and physical understanding anyway, as 
well as comparisons and initial estimates for calculations, and the flexibility of 
analytical results; it  would seem something of a disservice not to attempt also to 
create more appropriate numerical schemes for the important moderate-to-large 
Reynolds-number regime as a result. 

Below we consider an extended interactive boundary-layer approach and its origins 
for unsteady channel flows and boundary layers, in $52 and 3 in turn, and then present 
results and comparisons for infinitesimal linear disturbances in $ 4. Computations for 
nonlinear disturbances are described in $5,  followed by a discussion in $6  on our 
restoring the results t o  ‘full ’ status and subsequent comparisons. Finally $7 provides 
a further discussion. The agreement found between the interactive and the full 
solutions is quite close even at subcritical Reynolds numbers as low as & of the critical 
linear value for plane Poiseuille flow and $ for the Blasius boundary layer. In  a 
practical or numerical sense these comparisons, and the associated development of 
an alternative numerical method addressing the full NavierStokes equations in $ 6, 
represent the firmest tests on the value of the present interactive concept, and we 
may regard these as very favourable features from both the computational and the 
theoretical standpoints. The scope is restricted here to two-dimensional unsteady 
motions, for an incompressible fluid, with the characteristic Reynolds number R being 
based on a typical flow speed u,  and a typical flow thickness, the channel half-width 
or a typical boundary-layer displacement thickness. Corresponding non-dimensional 
velocities u, v, Cartesian coordinates x, y and time t are used, while the pressure is 
written as pm u: p ,  where pm is the density of the fluid. For the boundary-layer case 
the global Reynolds number based on a typical lengthscale of the boundary layer is 
then Re K R2. The subscripts r, i used below denote real and imaginary parts. 

2. The concept in channel flow 
I n  support of the extended interactive boundary-layer concept to be adopted for 

channel flows a t  finite Reynolds numbers R, we take the nonlinear stability properties 
(Smith 19793) for asymptotically large R as our starting point. 

Based first around the lower branch of the neutral curve, these asymptotic 
properties take a double-decked interactive form there (Smith 19793; Hall & Smith 
1982). I n  the core of the motion, for 0 < y < 2, the total flow field has the form 

( U ,  V j  P) = ( U ( Y ) ,  0,O) 4- (EZUlr C ~ V I ,  cap,) - *  * ,  (2.1 ) 

with a large characteristic lengthscale x = e l ’  X controlling the flow solution, 
whereas in the viscous wall layer, where y = E ,  Y ,  the expansion is 

(u, v , p )  = (C2 u, E5 v, E4 P)  + .. . . ( 2 . 2 )  

Here en = R-3n, n 3 1 ,  are small parameters and U(y) is the basic inflection-free 
velocity profile, in the channel defined by 0 < y < 2 .  To be definite we take this to 
be plane Poiseuille flow, U = y-h2,  although more general profiles with or without 
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inflexion points can be accommodated also. The governing equations in the core are, 
from a formal substitution into the Navier-Stokes equations, 

3% - aP (2.3a, b, c )  
au, av, au, dfi -+- = 0, u-++,- = 0, u- - -1 ax ay ax dy ax a y '  

Meanwhile in the nonlinear wall layer the Navier-Stokes equations reduce to the 
boundary-layer equations 

au av au au au ap a2u ap 
ax ay ax ay ax ay2 ay 
-+- = 0, %+ U-+ V- = --+-, 0 = --, (2.4a,b,c) 

where Tdenotes the large characteristic timescale, t = €3,  T. The boundary conditions 
required are for no slip a t  Y = 0, for matching between (2.3a-c) as y + 0 + and (2.4~-c) 
as Y-too, i.e. interaction, and for appropriate disturbance symmetry a t  the centreline 
y = 1. Thus 

P(X, T) = p,(X, 0 + ,  T), lim ( U -  Y) = ul(X, 0 + ,  T ) ,  p , (X ,  1, T )  = 0. 
Y-tCC 

(2.5a, b, c) 

Consider next the hierarchy of applications of (2.3a)-(2.5c). The linearized version 
of (2.4a-c), where U -  Y, V ,  P are small, coupled with the core properties (2.3u-c), 
yields the classical asymptote for the Orr-Sommerfeld lower branch of the linear 
neutral curve and its environs. Next, the weakly nonlinear version of (2.4u-c) likewise 
reproduces the asymptote of the weakly nonlinear Stuart-Watson theory as R-tco. 
Thirdly, the fully nonlinear version of (2.4a-c), solutions of which have yet to be 
attempted, corresponds to  the asymptotic properties of full Navier-Stokes calcula- 
tions, again as R +a. 

Yet in all three versions, although the above account gives the formally correct 
limit as R+m, it is sometimes true that numerically close agreement with the 
corresponding finite-R results occurs only a t  rather large R, particularly in stability 
problems,t unless higher-order terms in the expansions, here (2.1), (2.2), are also 
generated. Again, the limit above is confined to the structure of the lower-branch 
solutions. A separate limit and its higher-order terms have to  be invoked to cover 
the upper branch, which is considered later in this section and is physically distinct, 
although there are some hybrid analyses attempting to cover both branches. These 
two possible criticisms, concerning the practical necessity of higher-order analysis and 
the awkward distinction between the lower- and upper-branch structures, are dealt 
with quite competently by the extended interactive boundary-layer approach. This 
approach simply addresses the equations 

au au au ap i a Z u  
- +- -+ ' O ' ,  
at + u-+ ax '- ay = -- ax R a y 2  

(2.6b) 

( 2 . 6 ~ )  

t I n  steady motions, by contrast, qualitative and quantitative agreement between asymptotic 
theory and finite-R calculations, and with experiments, does occur often at surprisingly moderate 
or low R (for examples see Messiter 1979; Stewartson 1981 ; Smith 1982), although there are minor 
counter-examples to  this. 
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for 0 6 y < 2,  a t  finite R .  This set, reduced from the Navier-Stokes equations, clearly 
reproduces the leading-order limits (2.3a-c), (2.4a-c) when analysed for large R, as 
we should wish, but i t  also agrees with the Navier-Stokes equations as regards the 
higher-order terms (+ . . . ) in (2 .1) ,  (2 .2) ,  to several orders of magnitude. For the terms 
deliberately omitted in (2.6a-c) and denoted by + ‘0’ there, i.e. the lateral diffusion 
a2v/ay2, the streamwise diffusion a2u/ax2, a2v/ax2 and the inertia force v av/ay, affect 
the expansions ( 2 . 1 ) ,  (2.2) only at relative orders of c2, E ,  respectively a t  most. Thus 
the set (2.6a-c) should capture the structure, and hence the dominant physics, of the 
lower branch’s nonlinear stability features well. Moreover it provides the desired 
unified approach, since it captures also the upper branch‘s linear and nonlinear 
stability features, as follows. 

Around the upper branch of the linear or nonlinear neutral curve for large R (Smith 
19793; Smith & Gajjar 1984) the main streamwise lengthscale is again long, 
x = A c l  X ,  where A ,  (4 1 )  denotes R-hn. The unsteady flow structure there has a 
quadruple-decked form, comprising a predominantly inviscid core again, and a 
mainly inviscid wall layer of thickness A ,  within which are two distinct viscous zones, 
the Stokes wall layer and the critical layer. The timescale is again long, t = A;1 T .  
Without needing to go into the detailed expansions, we observe that the core is 
controlled again by equations of the form (2.3a-c), and so is the inviscid wall layer 
in fact, although the next-order contribution bringing in ii“ plays an important role 
there in producing a weak logarithmic irregularity a t  the critical level. Here the 
viscous critical layer, whether linear, weakly nonlinear or fully nonlinear, and 
whether in or out of a neutral state (Smith & Gajjar 1984), has thickness A? and has 
the property that the pressure variation across it laterally is negligible and the main 
viscous term comes from a2u/ay2, as in (2.6 b ) .  Airy’sequation or its nonlinear/unsteady 
counterpart for the dominant vorticity au/ay smooths out the logarithmic irregularity, 
produces a velocity jump across the critical layer, and is obtained identically from 
both (2.6a-c) and the Navier-Stokes equations. Similarly, the Stokes wall layer of 
thickness A ,  required for the satisfaction of the no-slip condition a t  y = 0 emerges 
in the same form from the Navier-Stokes equations and from (2.6a-c), again to 
several orders of magnitude. We observe further that any nonlinearity (Bodonyi & 
Smith 1981 ; Smith & Bodonyi 1982) affects the critical layer most, leaving the flow 
structure elsewhere intact until the disturbance lengthscale shortens significantly. 
Indeed a hierarchy of applications much like that for the lower branch describes the 
linear and nonlinear effects of the upper-branch type. 

Given that the reduced, unified, set (2.6a-c) reproduces the correct asymptotic 
behaviour on and around both the branches of the neutral curve and in-between, to 
several orders, then, we investigate finite-R features and comparisons in $4 below, 
after a discussion of boundary-layer stability in 93. 

3. The concept in boundary-layer flows 
Reasoning akin to that in $2 applies also to  the linear and nonlinear instability 

of inflection-free boundary-layer profiles U(y), apart from one possible extra feature 
below. Profiles with inflection points can also be accommodated nevertheless : see later 
comments. 

Thus the lower branch and its environs, for both linear and nonlinear disturbances, 
are controlled a t  large R by the triple-deck interactive structure (Smith 1979a), in 
which the governing equations for the lower deck nearest the wall are ( 2 . 4 ~ - c ) .  Here, 

11 2 
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apart from the finite non-zero skin-friction factor U’(O), the expansion of the flow 
solution is 

(u ,w ,p )=  ( S , U , E 3 V , E 2 P ) + . . .  (3 .1 )  

now, with E ,  zz R-in 4 1 ,  x = e l 1  X is large, y = Y is small and time t = e;l T is 
large. The main deck, the majority of the boundary layer, likewise yields ( 2 . 3 a ,  b ) ,  
but ( 2 . 3 ~ )  is replaced by i3p1/ay = 0,  giving p1 = P ( X ,  T ) ,  where 

(u, w, P )  = (U(y), 0,O) + (€1 U l ,  €2 u1, c,pJ + .. . . (3 .2 )  

The possible extra feature arising, and referred to  above, concerns the potential flow 
outside the boundary layer, in the upper deck. There the pressure disturbance satisfies 
Lapiace’s equation, since y = E;’ y is then comparable to  2, and ii is effectively unity. 
So the extended interactive boundary-layer equations (2 .6  a-c) are in principle still 
appropriate within the upper deck. This, however, is predominantly inviscid anyway, 
being controlled to leading order by the potential-flow problem 

with 

(”+”) - - 0 ,  
ax2 a? p 2 -  

( 3 . 3 a )  

to match ( 3 . 2 ) ,  and a boundedness condition in the far field. Here p = e2P2 ,  and 
u = 1 + c2 U 2 ,  w = c2 GUz, to leading orders. Hence for convenience we may restrict the 
interactive boundary-layer version (2 .6  a-c) to the viscous boundary layer itself, the 
lower and main decks, provided that the outer condition imposed on (2 .6a-c)  as y+oo 
reflects the match with the potential flow ( 3 . 3 )  outside. Accuracy, in comparison with 
the full Navier-Stokes equations, is then maintained to  several levels of order E ,  (as 
in 32)  by ( 2 . 6 ~ - c )  within the boundary layer, while outside also the accuracy level 
can be improved by extending (3 .3  c) to include the time derivative of the displacement 
6 as described below. The restriction of (2.6u-c) here to the boundary-layer region 
in essence reduces the extent of the domain of integration. The equations (2.6a-c) 
could still be solved outside the boundary layer as well, but by limiting the integration 
to the boundary-layer region and using interaction with ( 3 . 3 ~ - c )  outside we keep the 
grid extent down and avoid more multistructured numerical difficulties arising a t  
higher Reynolds numbers. This aspect of course is perhaps rather a matter of choice, 
interpretation of the asymptotics or guesswork, as are several aspects in this paper, 
and other workers may prefer different treatments. Our aim here and throughout is 
to be useful and realistic and to enlarge the scope of the asymptotic knowledge rather 
than just being asymptotically correct. However, the major test ultimately, aside 
from truncation and roundoff error, is the comparison with full solutions (Navier- 
Stokes or Orr-Sommerfeld), and there the present interactive version does do well, 
even a t  relatively low Reynolds numbers, as we shall see subsequently in $34 and 
6. That in a sense gives the justification for the present approach. 

So we couple (2 .6a-c)  for finite Reynolds numbers R with the outer inviscid 
problem 

(3.4) 
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by means of the conditions 

@-u*y-S in (2.6a-c) as y-tco ( 3 . 5 ~ )  

Here (3.5u-c), with u*, 6, p unknown, are consistent formally with the Navier-Stokes 
equations and matching a t  large R, to several orders of magnitude again. At finite 
R no formal consistency exists, of course, but the hope, as explained in $ 1  and to 
be tested subsequently, is that numerical accuracy is preserved because of the 
emphasis on the major physical balances operating. 

It can be verified that (2.6a-c) coupled with (3.4), (3 .5~ -c )  also allows the correct 
upper-branch asymptotes to emerge. These asymptotes (Bodonyi & Smith 1981) 
depend more on the particular form of the boundary-layer profile, in linear or 
nonlinear stability, but in any case the asymptotic structure divides into four zones 
dominated by the viscous or inviscid boundary-layer equations and one outermost 
zone of potential-flow properties. So again either the coupling/interaction of (2 .6~-c )  
with (3.4), (3.5a-c), or just (2.6u-c) acting across the entire flow, is sufficient to 
capture the upper-branch stability features to a number of orders of magnitude. 
Hence an unified treatment covering the whole neutral curve, whether linear or 
nonlinear, and whether in neutral conditions or not, is in prospect. 

4. Linear stability properties 
The first most obvious test to make on the extended interactive boundary-layer 

approach put forward in $$2 and 3 is to compare its predictions with 'full' 
Orr-Sommerfeld ones for linear disturbance properties. This was done as follows. For 
an infinitesimal disturbance size A,, if a travelling-wave perturbation of the form 

(u,v,p) = (E(y),O,O)+A,Re (.ii,v",p)ei(az-at)+O(A2) 0 (4.1) 

is assumed (see also comments in Q5), then a t  finite R the resultant linearized form 
of the Navier-Stokes equations is 

iu.ii + v"' = 0, ( 4 . 2 ~ )  

for (6, v", fl) (y), or the Orr-Sommerfeld equation 

(4.2d) 

for the stream function $(y). Here the wavenumber a is assumed real, the complex 
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frequency P is taken to be the unknown eigenvalue, and 2 = J'(y), v" = -iaJ. The 
boundary conditions are 

.ii = v"( = $ = $') = 0 a t  y = 0, yz, (4 .2e)  

The corresponding linearization of the extended interactive boundary-layer equa- 

w *  

where yz = 2 for the channel flow but yz = ' 00 ' in effect for the boundary layer. 

tions (2.6u-c) is 

i aG+Z '  = 0, ia c+fiU' = -iajj+R-13", ia 

or, in terms of J, 
(4 .3d)  

These are subject again to (4.2 e )  in the case of channel flow, whereas for the boundary 
layer we have 

J ff .ii*y-& 

(4 .3e)  

F+- (a-P) d I 
in view of (3 .4) ,  (3 .5a-c) ,  with 2* (= (u* - l ) / A , ,  see (3 .5b,  c)) being an unknown finite 
constant. In  (4 .3e)  strictly yz should be large, but not my,, in order that  the exp ( f a y )  
behaviour associated with solutions of ( 4 . 2 d ) ,  ( 4 . 3 d )  as ay+m is deliberately not 
achieved. This corresponds to solving within the boundary layer alone (the main and 
lower decks) and leaving the flow outside (in the upper deck) accounted for by (3 .4) ,  
with (3.56, c) and with ay there being O( 1 )  as explained in $3. This is strictly valid 
only asymptotically, but as we shall see i t  turns out also to 'work' in the numerical 
sense a t  the finite Reynolds numbers R of real interest, and that is the ultimate test 
in the present context, leaving aside the effects of truncation and roundoff error. 
Additionally in (4 .3e)  the final condition relating$, $is the interactive one; for outside 
the boundary layer the solution of (3 .4)  with (4 .1)  yields p cc A, fi ecay, so that ( 3 . 5 ~ )  
then requires a$ = a/3S"-a26" because u* = l + O ( A , ) ,  and we then have (4 .3e) ,  to 
leading orders. Note also that here the interactive version (4 .3d)  amounts to a 
long-wave (small-a) approximation of the full equation ( 4 . 2 d ) ,  but only as far as the 
viscous terms are concerned. This makes good physical and theoretical sense, for 
viscous terms matter much only in relatively thin layers (of scale [y] 6 1) a t  large 
R anyway. So the influence of the neglected orders a2[yI2 in the viscous terms is then 
correspondingly diminished, compared with the relative orders a2 which are kept 
elsewhere in the equations. Conversely, in the boundary-layer case i t  should be clear 
from our earlier comments, especially those in $ 3 ,  that the a2 terms kept are 
significant structurally or actively only outside the boundary layer, not within it. The 
a2 terms within the boundary layer influence the solution only as passive numerical 
corrections, so that  in particular the exp ( ay) behaviour referred to  above is avoided 
since ay does not become large. Further comments concerning the level of accuracy 
of ( 4 . 3 d )  compared with ( 4 . 2 d ) ,  a t  large R ,  are covered by the earlier remarks in $02 
and 3 on the nonlinear versions. More important for our present purposes are the 
results achieved a t  finite R-values of interest, where a direct comparison between the 
full set (4 .2d)  and the reduced, interactive version (4 .3d)  can be made, thus providing 
the necessary test on the usefulness of the interactive version. 
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Numerical solutions were obtained by means of a fairly straightforward finite- 
difference scheme. More sophisticated differencing or iteration or other numerical 
devices could be used a t  this stage, but that is not the main point here; our prime 
concern instead is in the value and accuracy of the interactive equations as compared 
with the full ones. We preferred to address the forms (4.2a-c), (4.3a-c) for velocities 
and pressure, rather than (4.2d), ( 4 . 3 4  for the stream function. Thus for (4.2a-c) 
we discretized the equations in the form 

(4.4a) 

for 2 < j < J-1, (4.4b) 

$ j  -jjjpl 

AY 
for 2 < j < J .  (4.4c) 

Here J- 1 is the number of steps in y, ( J -  1)  Ay = yz fixes the steplength Ay for a 
finite value of y2, while Gj stands for G [ ( j  - 1 )  Ay] and so on. In (4.4b, c) fj is evaluated 
a t  y = ( j - l )Ay,  y = (j-$)Ay respectively, and similarly for U', so that nominal 
second-order accuracy in Ay holds throughout. The constraints 

(4.4d) I - -  u1 = v1 = uJ = f i J  = 0 

replace (4.2e), and a normalization 
jjl = 1 (4.4e) 

is made. Hence (4.4a-e) provide 3J+ 1 nonlinear complex equations for the 3J+ 1 
complex unknowns Gj ,  f i j ,  jjj (1 < j < J )  and /3, for a prescribed value of a. Newton 
iteration converts these to linear form, with the associated matrix being block 
double-diagonal and each block being 3 x 3. Matrix inversion was then performed by 
Gaussian elimination, to determine the Newton increments, and the iterations were 
continued until the successive values of each of the unknowns above differed by less 
than lo-'. Typically this took about 4 iterations. For the interactive version (4.3a-c) 
the same approach was used, with the term involving a2 in (4.4b), and the viscous 
terms in (4.4c), simply replaced by zero. Values of J between 101 and 401 and, in 
the boundary-layer case, of yz between 20 and 160, were used to check on the 
numerical accuracy achieved. In  the interactive version, however, it  proved sufficient 
to keep yz smaller, a t  a value of 10 or 20, for the required accuracy in the boundary-layer 
case where (4.3e) is invoked a t j  = J .  We believe the overall accuracy achieved is a t  
least graphical, which suffices in the present context, although it can be improved 
readily by means of grid refinement and by grid stretching for example. Comparisons 
of the results with those from other computational techniques bear out the accuracy 
obtained here, as well as the robustness of the method. 

Figure 1 shows the results for /3,, Pi as functions of a, for plane Poiseuille flow, over 
a range of Reynolds numbers R between 500 and 7000. This is about the range of 
most practical interest, since the critical R of linear Orr-Sommerfeld theory is 
approximately 5772, whereas experimentally instability is found usually for R much 
lower, 1000-3000, unless theexperiment is very controlled to minimize the disturbances 
present. The results from the full and the interactive methods agree reasonably well, 
and indeed surprisingly so, over the whole range covered, with the agreement 
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FIGURE 1. For the linear stability of plane Poiseuille flow, comparisons between interactive and 
full Orr-Sommerfeld solutions (see §§2, 4) for Pr, Pi versus a: (a )  A, ., 0 give full solutions at  
R = 7000, 6000, 5000 respectively and x give corresponding interactive results; ( 6 )  give full 
solutions, x give interactive ones, for R = 2000 and 500 as shown. 
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-0.0 12 4 
FIGURE 2.  Comparisons between interactive and full solutions for pi versus cx. in the linear stability 
of the Blasius boundary layer (see $53, 4). Full solutions at  R = 650, 350, 200, 100 are marked by 
symbols 0, 0,  0, 

improving as R increases, as should be expected. Even for R as low as 500, however, 
the agreement is typically to within approximately 1 % in p, and 4 yo in pi. Around 
the linear neutral curve these typical differences diminish to less than approximately 
yo, 2 Yo respectively, so that the interactive approach reproduces the entire neutral 

curve very well. 
For the Blasius boundary layer the results for pi from the two methods are given 

in figure 2. The Reynolds-number range 100 d R < 650 is covered, thus straddling 
the linear critical value of 1.720R z 520. Percentage differences obtained are 
comparable to those of figure 1, despite the much lower range of R-values studied. 
It is interesting to note that if we reduce the equation set (4.3) further by setting 
splay to be zero within the boundary layer, as leading-order theory would suggest 
asymptotically, then the differences at finite R become more pronounced. This ties 
in with the comment earlier in this section (second paragraph) relating to the long-wave 
approximation applied to  viscous terms only. 

The fact that the extended interactive concept continues to be of practical value 
not only above, but also well below, the critical value of R in linear theory is 
encouraging. We therefore move on to nonlinear properties. 

respectively, with x giving the corresponding interactive results. 

5. Nonlinear stability properties 
The fully nonlinear unsteady set (2.6a-c) now merits study in view of the 

encouraging comparisons found above for linear theory and of the overriding need 
for nonlinear stability features at finite R, away from the linear neutral curve, as 
mentioned in 5 1 .  We obtained nonlinear numerical solutions of (2.6a-c) for channel 
flow by using the following spectral method, which is built on the methods described 
in $4. 
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Spatial periodicity in x, of wavelength 2n /a ,  is assumed, so that  Fourier series of 

(5.1 a )  

the form 
m 

(u, $) = ( ~ 0 ,  $ 0 )  + c [un, @r,)En + (dnj G ~ ) E - ~ I ,  
n-1 

(5 . lb )  

apply for all t > 0. Here $ is the stream function, denotes the complex conjugate, 
and u,, $,, p ,  are unknown, generally complex, functions of y, t .  The function Q(t)  
o f t  is unknown and real, uo, $, are also unknown and real, and 

E = exp (iaz). (5.1~) 

Formal substitution into the extended interactive boundary-layer equations ( 2 . 6 ~ ~ )  
(cf. Q 6) therefore leaves, after some rearrangement, the component equations 

W n  
39 

u, =- for n 2 0, ( 5 . 2 ~ )  

a2un = 2, for n B I ,  (5 .2b )  
au 

-+i(na) u o u n - $ , ~ + p ,  
at a Y  1 R ay2 [ 

au0 1 a2u0 - zo, -+Q(t)--- - 
at R ay2  

( 5 . 2 ~ )  

-i(na)---+(na)2uo$n+- W n  aPn - - for n B 1, (5.2d) 
at aY 

(5 .2e )  

where the right-hand sides Yn,  An are given by 

(5.36) 

n-1 00 

m-1 m-n+l 
-a-2&, = c (n-m)2 urn $n-m + E (m-n)' Gm-n 

a0 + C (m+n)2&iim $m+n,  (5.3C) 
m-1 

W 

- C Z - ~ J ~ ~  = c m2(um Gm +.iim $,), (5.3d) 
m = l  

in turn, and Yn ,  4, contain nonlinear contributions. 
The component equations are written in the forms ( 5 . 2 ~ - e )  to indicate the implicit 

time-marching numerical procedure used for their solution. Second-order finite- 
difference representations of the left-hand sides are taken as in $4, for the y-derivatives, 
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with centring a t  j, j-+ as appropriate and a t  time t ++At,  where At is the timestep. 
Second-order finite-differencing is applied also to the right-hand sides, as described 
subsequently. With the solution for +,, u,, p ,  for all n known a t  time t ,  a first guess 
is made for the corresponding values a t  the next timestep t + A t .  For each value of 
n,  ( 5 . 2 ~ - e )  are then solved, together with the no-slip conditions 

u, = +, = 0 a t  y = 0 , 2  (for n 2 1 )  ( 5 . 4 ~ )  

and (5.5) below (for n = 0), to give updated values of +,, u,, p ,  a t  time t + A t ,  with 
the other components km, m + n, etc., kept a t  their latest stored values. This is done 
in turn for all n-values and then repeated until all successive iterates are sufficiently 
close in value. The scheme then moves on to the next timestep. I n  solving ( 5 . 2 ~ - e )  
for k,, u,, p ,  for n 2 1 ,  a t  t + A t ,  we adopted the procedure used in $4 for linear 
theory, adding in the nonlinear terms LZ,, A,, replacing a by na as appropriate, and 
finite-differencing the time derivatives a t  t + iAt in the form 

(5 .4b)  

and similarly for a$, /at ,  to produce an effective p = i /A t .  For $o, u,, Q ,  however, 
a separate approach was taken. The heat-conduction equation ( 5 . 2 ~ )  for u, was 
set in three-point difference form, which, with the boundary conditions uo = 0 at  
y = 0 , 2 ,  yielded a tridiagonal system, readily inverted to give uoj for a given guessed 
value of Q(t + At) .  Then tjE0 was obtained by integration of ( 5 . 2 a ) ,  with $r0 = 0 a t  y = 0. 
This left the +o value incorrect a t  y = 2 ,  but a double iteration with respect to 
Q(t + At) ,  revising uo, restored the required conditions 

1 U ,  = +o = 0 a t  y = 0, 

u O = o ,  +,=+ a t  y = 2 . J  

Here (5 .5)  corresponds to  a condition of fixed mass flux. The alternative condition 
of a fixed pressure gradient remains to be investigated. The right-hand sides 9, above 
were differenced with the forms 

U m  Un-m X U m j  Un-mjj 

( 5 . 6 ~ )  

and so on, for centring a t  j, whereas in An we took 

u m  $n-m x f ( u m j  +umj -1 )  ($,-mi + +n-mj- l )>  (5 .6b )  

and so on, for the appropriate centring atj-$.  Again, (5 .2e )  served to  determine the 
pressure component p ,  once the numerical solution for + m ,  um, m 2 0, had converged 
a t  a given time level. The final point here is that the infinite coupled system ( 5 . 2 ~ - e )  
was truncated to a finite, N-component, system by requiring in effect that 
+n = u, = p ,  = 0 for n > N .  

Typical values taken in the computations were N = 7 ,  with Ay = 0.02,  At = 0.08, 
and an iterative tolerance per timestep of This needed about 5-10 iterations. 
Checks made on the effects of N ,  Ay ,  At showed that reducing N to 5 altered the results 
by approximately 7 94 over a typical time range of 12, while doubling Ay had about 
a 5 yo effect, and doubling At produced about a 1 yo influence. Conversely an increase 
of N to 9, or a halving of Ay or At, produced corresponding changes of $ yo, less than 
2 yo, and $yo respectively. So the typical values noted above seemed a reasonable 
choice: see also a further check later. I n  more detail, for R = 6000 and initial 
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FIGURE 3. Nonlinear results calculated for the disturbance amplitude A,  versus t at R = 1000 in 
channel flow: . . . . . . , initial disturbance size A = 1, interactive solution; -, A = 5, interactive; 
- - - - - - - , A = 5 ,  ‘full’ solution. See $15, 6.  

amplitude A = 1 the values obtained at time t = 12 for the response A ,  defined below 
were -0.014758, -0.015758, -0.016067, with ( A y , A t )  = (0.04,0.08), (0.02,0.04), 
(0.01,0.02) in turn. These results conform satisfactorily with the second-order 
accuracy of the scheme used. Also for ( B y ,  At) = (0.04,0.16) the corresponding value 
of A ,  obtained was -0.014824, which provides a check on the effect of the timestep 
alone. 

The initial values used to start the calculations at t = 0 were defined by 

(5.7) 
A( 1 + i) y2(2  - y f 2  A ( l + i ) y  

@ n  = (n+ 1 ) 5  Pn = ( % + 1 ) 5  7 

with ( 5 . 2 ~ )  for un, for n 2 1 ,  while uo, @, took the plane Poiseuille values uo = y(2 - y ) ,  
@o = y2-$ j3 .  The computations were performed for various prescribed values of the 
Reynolds number R, the wavenumber a and the initial amplitude factor A. 

The main results so far are presented in figures 3-5, are restricted to a = 1 and 
show a representative unsteady amplitude response A,(t)  of the flow solution given 
by 

A,@)  = @lr(o.8> t ) .  (5 .8)  

More comments on these results are given in $6. 

6. Raising the nonlinear calculations to ‘full’ status 
The major aim in most interactive boundary-layer approaches a t  finite R is a 

numerical one, to provide a close approximation to the full solution by solving 
accurately the reduced set of equations: here ‘full’ refers to the solution of the 
discretized Navier-Stokes equations. A test on the closeness between interactive and 
full solutions is therefore desirable. Such a test has been given already in $4 for linear 
disturbances, suggesting a fairly affirmative degree of agreement. In this section a 
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FIGURE 4. Nonlinear disturbance response A,  versus t at R = 3000 in channel flow: . . . . . . , A = 1 ,  
interactive solution; A, A = 1, ‘full’ solution; -, A = 5, interactive; -------,  A = 5,  ‘full’; x ,  
A = 5, full, but number N of components reduced to 5;  + , A = 5 ,  full, but N increased to 9. See 
555, 6. 

-o.2 1 
FIaURE 5 .  Nonlinear disturbance response A,  versus t a t  R = 6000 in channel flow : . . . . . . . , A = 1 ,  
interactive solution; x , A = 1, interactive but timestep At doubled; + , A = 1,  interactive but time 
and spatial steps At, Ay halved; 0,  A = 1, interactive but At, Ay halved again; -, A = 5, 
interactive; - - - - - - - ,  A = 5 ‘full’ solution. See @5, 6. 

test applied to the nonlinear results is described, as well as a new means of deriving 
full Navier-Stokes solutions based on the interactive method of $5. 

If we address the Navier-Stokes rather than the extended interactive boundary- 
layer equations, then the extra contributions from the terms R-’ a2u/ax2, v &lay, 
B-l(a2v/ay2 +a2v/az2), neglected in (2.6a-c) and in $ 5 ,  may be added to the right-hand 
sides Pn, An. This is done in a passive fashion, in the belief that these extra 
contributions ere not usually part of the dominant physics of the nonlinear unsteady- 
flow solutions at  the Reynolds numbers of real interest. Once again of course the 
firmest checks available to test this belief are the resulting numerical closeness 
between the interactive and the full solutions and the extra work required to upgrade 
the calculations from interactive to full status. The implied additions to ia-lLZn are 

( 6 . 1 ~ )  
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00 m 

+ I: m(m-n)$mam-n+ Z m(m+n)+mUm+n (6.lb) 
m-nf l  m-1 

for n 3 1. 
I n  the test or full calculations, then, the contributions (6. la ,b)  were added to 

(5.3a, c) respectively a t  each iteration per time level. Otherwise, the discretization 
and procedures described previously were maintained throughout. The outcome is 
summarized in figures 3-5. Clearly, raising the computations to full Navier-Stokes 
status by means of the extra contributions (6.1 a, b)  produces some quantitative 
alteration in the results a t  the values of the Reynolds number studied, but this 
alteration appears predominantly as a small shift in the temporal period and in the 
decay or growth rates. This is exactly as the earlier linearized comparisons would 
suggest, from an inspection of figure 1. Relatively little real change in the amplitude 
response or in the qualitative properties of the nonlinear unsteady flow is involved 
otherwise, particularly for the smaller initial amplitudes. A further test on the 
calculations was also performed here. The component solutions obtained were used 
to construct the individual terms, u, au/ax, etc., appearing in the Navier-Stokes 
equations a t  particular x-, y-, t-values, and so a measure of how well those equations 
were satisfied could be derived by substitution. We found that the error relative to 
ap/ax decreased from 2% with N = 5 components to less than 1 % with N = 7. 
Moreover, with these full calculations as compared with the interactive ones there 
was no significant increase in the number of iterations required for convergence per 
timestep or in the overall computer time required. This tends to favour the view that 
the extended interactive boundary-layer approach does indeed provide a quite close 
approximation to the full solution, numerically as well as physically. Another point 
of interest here is that from the calculations done so far there seems some evidence 
of nonlinear effects leading to subcritical instability. Although for R = 1000 the initial 
disturbance amplitudes A = 1,5 (corresponding to 4 yo, 20 yo approximate maximum 
velocity disturbances of the Poiseuille flow) both lead to decay of the nonlinear 
disturbance A as time t increases, the corresponding decay is much lessened for 
R = 3000, and indeed almost changes to a growth for A = 5 then. Slight growth seems 
evident at R = 6000. We note also the slight shift in the temporal period of the 
response due to nonlinear effects, while for the smaller initial disturbances the 
temporal period of the unsteady flow solution soon approaches that predicted by 
linear normal-mode theory. 

7. Further comments 
The measure of agreement found in $54, 6 and figures 1-5 between the full 

(On-Sommerfeld or nonlinear Navier-Stokes) results and the alternative (extended 
interacting boundary-layer) approach, a t  the Reynolds numbers of most physical 
interest, tends to add considerably to the value of understanding asymptotic stability 
properties, we believe. The asymptotic theory points to the dominant physical 
features of the moderate-to-high Reynolds-number regime, and hence to the dominant 
terms and balances in the unsteady Navier-Stokes equations. The interactive 
approach then concentrates on those terms and balances, to construct a numerical 
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method which, if need be, can be restored readily ($6)  to ‘full’ Navier-Stokes status 
afterwards, in a perhaps rather novel way, for a reasonably streamlined flow, at  least. 
This seems a fairly powerful application of asymptotic understanding and is, for linear 
and nonlinear stability, perhaps the most useful to  date in real terms for both channel 
flow and boundary layers. 

It would therefore be interesting physically and theoretically to continue the 
nonlinear unsteady computations, studying other ranges of Reynolds number, 
wavenumber and amplitude and attempting possible improvements with regard to 
grid stretching and the introduction of Fourier series, for example, given that the 
calculations to date appear to have favoured the interactive view taken. The general 
interactive approach, we should emphasize again, is ‘sensible’ rather than ‘rational ’ 
at finite Reynolds numbers (boundary layers for instance do not exist at such 
Reynolds numbers anyway, strictly speaking), it is open to various interpretations 
as we have noted before, and it is really concerned more with the application than 
the theory itself. The present interactive version nevertheless encompasses most of 
the known features of linear and weakly or fully nonlinear stability theory, and that 
is to its credit. The occurrence of shorter Rayleigh waves and/or strongly nonlinear 
critical layers for instance (Bodonyi, Smith & Gajjar 1983) is within the scope. 
Further, the implied nonlinear aspects of boundary-layer stability have not been 
investigated yet, nor have the many other possible versions of the unsteady 
interactive boundary-layer or parabolized Navier-Stokes approach, and these merit 
further study. 

It would be interesting in addition to apply the interactive ideas to other nonlinear 
unsteady flows of real concern. These include non-parallel flows, such as the motion 
past it finite flat plate (D. W. Moore 1983, private communication), three-dimensional 
stability, stratified fluids, and rotating fluids. 

Thanks are due to the S.E.R.C., for financial support for D.P. and J.W.E., and 
for computer support on the Cray at Daresbury. 
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